Smoothness Selection for Penalized Quantile Regression Splines
نویسندگان
چکیده
منابع مشابه
Smoothness selection for penalized quantile regression splines.
Modern data-rich analyses may call for fitting a large number of nonparametric quantile regressions. For example, growth charts may be constructed for each of a collection of variables, to identify those for which individuals with a disorder tend to fall in the tails of their age-specific distribution; such variables might serve as developmental biomarkers. When such a large set of analyses a...
متن کاملNonparametric M-quantile Regression via Penalized Splines
Quantile regression investigates the conditional quantile functions of a response variables in terms of a set of covariates. Mquantile regression extends this idea by a “quantile-like” generalization of regression based on influence functions. In this work we extend it to nonparametric regression, in the sense that the M-quantile regression functions do not have to be assumed to be linear, but ...
متن کاملBivariate Penalized Splines for Regression
In this paper the asymptotic behavior of penalized spline estimators is studied using bivariate splines over triangulations and an energy functional as the penalty. The rate of L2 convergence is derived, which achieves the optimal nonparametric convergence rate established by Stone (1982). The asymptotic normality of the penalized spline estimators is established, which is shown to hold uniform...
متن کاملMdl Knot Selection for Penalized Splines
There exists a well known connection between penalized splines and mixed models. This connection makes it possible to exploit certain results derived for mixed models in the estimation of penalized splines. We have derived the Minimum Description Length (MDL) model selection criterion [1] for mixed models (see eg. [2]). In this paper we investigate the performance of the MDL criterion in fittin...
متن کاملMarginal longitudinal semiparametric regression via penalized splines.
We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Journal of Biostatistics
سال: 2012
ISSN: 1557-4679
DOI: 10.1515/1557-4679.1381